Numerical verification of positiveness for solutions to semilinear elliptic problems
نویسندگان
چکیده
In this paper, we propose a numerical method for verifying the positiveness of solutions to semilinear elliptic boundary value problems. We provide a sufficient condition for a solution to an elliptic problem to be positive in the domain of the problem, which can be checked numerically without requiring a complicated computation. Although we focus on the homogeneous Dirichlet case in this paper (in fact, it is often possible that solutions are not positive near the boundary in this case), our method can be applied naturally to other boundary conditions. We present some numerical examples.
منابع مشابه
Existence and multiplicity of positive solutions for a class of semilinear elliptic system with nonlinear boundary conditions
This study concerns the existence and multiplicity of positive weak solutions for a class of semilinear elliptic systems with nonlinear boundary conditions. Our results is depending on the local minimization method on the Nehari manifold and some variational techniques. Also, by using Mountain Pass Lemma, we establish the existence of at least one solution with positive energy.
متن کاملA two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملQuadratic convergence of monotone iterates for semilinear elliptic obstacle problems
In this paper, we consider the numerical solution for the discretization of semilinear elliptic complementarity problems. A monotone algorithm is established based on the upper and lower solutions of the problem. It is proved that iterates, generated by the algorithm, are a pair of upper and lower solution iterates and converge monotonically from above and below, respectively, to the solution o...
متن کاملBifurcation Method for Solving Positive Solutions to a Class of Semilinear Elliptic Equations and Stability Analysis of Solutions
Semilinear elliptic equations are ubiquitous in natural sciences. They give rise to a variety of important phenomena in quantum mechanics, nonlinear optics, astrophysics, etc because they have rich multiple solutions. But the nontrivial solutions of semilinear equations are hard to be solved for the lack of stabilities, such as Lane-Emden equation, Henon equation and Chandrasekhar equation. In ...
متن کاملSome Remarks on Biharmonic Elliptic Problems with Positive, Increasing and Convex Nonlinearities
We study the existence of positive solutions for a fourth order semilinear elliptic equation under Navier boundary conditions with positive, increasing and convex source term. Both bounded and unbounded solutions are considered. When compared with second order equations, several differences and difficulties arise. In order to overcome these difficulties new ideas are needed. But still, in some ...
متن کامل